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Abstract. Using a spherical expansion of an ab initio N2-Nz potential, we have 
calculated harmonic lattice vibration frequencies for solid cy- and y-nitrogen, in good 
agreement with experiment and time-dependent Hartree calculations. Previous dy- 
namics calculations with an (isotropic) atom-atom model fitted to the same ab initio 
potential yielded libron frequencies that were considerably too high. We conclude, 
therefore, that the atom-atom model does not do justice to the accurate anisotropy 
of intermolecular potentials found by ab initio calculations. The upward shifts of the 
lattice frequencies caused by the anharmonicity in the potential agree well with the 
results from Green function calculations based on model potentials. 

1. Introduction 

Solid nitrogen, as one of the simplest molecular crystals, is used as a testing ground 
for modelling intermolecular potentials [l] and for lattice dynamics methods [2]. A 
large body of experimental data  has been collected [3] and many calculations have 
been performed [l] especially on the low-temperature a-phase a,nd the higher-pressure 
y-phase. In these ordered solids the molecules perform oscillations around their equi- 
librium positions and orientations. The angular oscillations are determined by the 
anisotropy of the intermolecular potentid. This anisotropy can be modelled in differ- 
ent ways: implicitly, by the use of an atom-atom potential, or explicitly, by a spherical 
expansion of the potential, which is a generalization of the electrostatic multipole ex- 
pansion [4]. In practice [5], atom-atom potentials are mostly understood to imply 
isotropic interactions between atoms. This restriction leads to  an approximation of 
the anisotropy in the intermolecular potential. Some authors [6-101 have proposed 
anisotropic atom-atom interactions. If these are chosen sufficiently flexible, they may 
reproduce the exact anisotropy of the intermolecular potential in a rather quickly con- 
verging form [%lo]. The use of such isotropic or anisotropic atom-atom potentials is 
especially attractive for larger molecules. 

Standard harmonic lattice dynamics calculations on a- and y-nitrogen have been 
performed using either ab initio [ll] or semi-empirical N,-N, potentials [l]. An a b  
initio potential, obtained from quantum chemical calculations [12], has not been fitted 
to  experimental (solid state) data  and, therefore, is not dependent on the approxima- 
tions made in the dynamics model. Such a potential can also be used to  calculate gas 
state [13] or liquid state [14] properties of nitrogen and i t  yields satisfactory results, 
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in general. Harmonic lattice dynamics calculations, using the a6 initio N,-N, poten- 
tial of Berns and Van der Avoird [15], resulted in translational phonon frequencies 
in good agreement with experiment [ll]. The calculated libron frequencies, corre- 
sponding with collective angular oscillations, came out about 30% too high, but this 
was believed to  be due mainly to  the failure of the dynamical model. Inclusion of 
potential anharmonicities and zero-point motion effects via the self-consistent phonon 
method [16] did not improve the libron frequencies significantly [ll]. 

In order to  describe strongly anharmonic motions, Briels, Jansen and Van der 
Avoird [17,18] developed a quantum mechanical lattice dynamics method, based on 
the time-dependent Hartree (TDH) formalism, in which the rotational molecular wave 
functions are expanded in a basis of free rotor functions. Also anharmonic potential 
terms up to  fourth order inclusive in the translational displacements are taken into 
account. Mean-field calculations showed that the single-particle rotational states are 
rather localized and that the corresponding set of energy levels resembles the spec- 
trum of a two-dimensional harmonic oscillator [17]. Surprisingly, the TDH calculations 
yielded libron frequencies in good agreement with experiment, whereas the (quasi-) 
harmonic models failed. 

The discrepancy between the two lattice dynamics methods described above might 
be caused by the use of different analytical representations of the intermolecular poten- 
tial. In the harmonic model, the force constants were calculated as second derivatives 
of an exp-6-1 isotropic atom-atom potential model [ll], which was fitted to  the a b  
initio N,-N, potential surface. The inaccuracies in the fits of the individual exchange, 
dispersion and electrostatic contributions are less than 10% [15]. The resulting inac- 
curacy in the overall potential, for instance, in the Van der Waals well depth is larger, 
however. The  TDH calculations, on the other hand, used a spherical expansion [17] of 
the potential, which represents its anisotropy exactly. 

In the following, we present analytical formulas required for the evaluation of the 
force constants of a spherical potential expansion. Using these force constants, har- 
monic lattice vibration frequencies are calculated for a- and y-nitrogen, which will 
be compared with atom-atom results, TDH and experiment. Thus, we can explicitly 
separate the effects of approximations made in the anisotropy of the intermolecular 
potential and the effects of anharinonicity on the calculated phonon and libron fre- 
quencies. 

2. Force constants from a spherically expanded potential 

The anisotropy in the interaction between two linear molecules p and p' is represented 
explicitly by the following spherical expansion [12] 

(1) 

which contains a summation over 1 = ( 1 1 , 1 , , 1 )  and m = (ml ,mz ,m) .  The vector 
Rpp, = R,, -R, connects the centres of mass of the molecules a t  positions Rp and Rp, ; 
aPp, = (6,,, , ppp,) denotes the polar angles of Rpp, with respect to  the global crystal 
frame. Further, U, = (6,, p,) describes the orientation of the molecular axis also with 
respect to the global frame. In ( l ) ,  Cg' is a Racah spherical harmonic function [19] 
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and the symbol following the second summation sign is a Wigner 3 j  coefficient. The 
distance-dependent expansion coefficients Q l ( R p P l )  can be obtained from a b  initio 
calculations [15,20]. They contain electrostatic (RL$-l2-'), dispersion (Ri;, n = 
6,8,10) and (exponential) exchange contributions. 

In harmonic lattice dynamics calculations, one needs the second derivatives of the 
total crystal potential with respect to  the external molecular coordinates 

If the crystal potential is assumed to  be a sum of pairwise interactions the force 
constants are given by 

The self-term F;:' contains a lattice sum that can be replaced, using translational 
and rotational invariance conditions [21-231, by an alternative expression in terms of 
intermolecular couplings F,xdl' with p' # p .  

The rotational force constants contain derivatives of Racah harmonic functions 
Ci '  with respect to  molecular angles 'p that  can be easily evaluated using [19] 

(4) 
a n  -c$(I~, c p )  = (im)nC$(19, 'p). 

ayn 

The first derivative of a Racah harmonic with respect to  d is also fairly standard and 
obeys [24] 

Applying (5) twice and using recurrence relations for the Racah harmonics [24] we 
find 

One has t o  be careful, however, if 29 = 0 or T because [24] 

which is not uniquely defined. A similar problem occurs for the second derivative with 
respect to  I9 if m = -2,O or 2. Therefore, one should avoid, by a convenient choice of 
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the global frame, the possibility tha t  a t  equilibrium the molecules are oriented parallel 
to the z axis. 

In order to evaluate the translational force constants it is convenient to use spher- 
ical tensor coordinates R, defined by [19] 

The position-dependent part of the spherical expansion of (1) is a function of the inter- 
molecular vector R p p l .  Therefore, all derivatives with respect t o  individual molecular 
coordinates Rp,, and Rpl, can be expressed in derivatives with respect to intermolec- 
ular components Rppl, according to 

Using the spherical gradient formula of [18] and [19], it  follows tha,t 

and 

where the operator Ark is defined as 

( I  + 1)(21+ 3))  ’” ( d 
d R  R )] ’ I 

- ‘,,,+I 

The  derivatives with respect to spherical tensor components Rpp and Rpl, have to  be 
transformed into Cartesian derivatives. By the use of (8) together with the property 
tha t  the  pair potential V p p l  is a real function, it is easily shown tha t  the Cartesian 
translation-rotation force constants Fp’ps (T = 2, y, z ;  p = 1 9 , ~ )  are related to the 
spherical tensor components Fp”ps ( p  = - 1 , O ,  1) via 
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The Cartesian translation second deriva.tives Fp’p:’ can be obtained from the spherical 
tensor components F::’ using the relations 

F:; = -FGf’ + Re [Fp’d,] FP”PY, = Fp”p”l = -1m [Fj’p’,] 

FYY pp‘  - - -F;fl - Re [Fj1,’,] F z 2  - F f x  - -4 Re [Fl;] PP’ - PP’ - 

PP’ - PP FYz - Fzy, = 4 Im [Fdps] . F;;’ = Fp”ps 

Herewith, we have given some basic analytical formulas that can be combined in order 
to  evaluate the force constants corresponding to a spherically expanded intermolec- 
ular pair potential. These formulas will also be useful in applications of anisotropic 
atom-atom potentials [8-lo]. The force constants have been implemented in a har- 
monic lattice dynamics program in which they are used to construct the wave-vector- 
dependent dynamical matrix [21]. Diagonalization of this matrix yields the desired 
lattice vibration frequencies. 

3. Results and discussion 

We have performed harmonic lattice dynamics calculations on cy- and y-nitrogen using 
a spherical expansion of the intermolecular potential as described in section 2. The  
self-term has been evaluated either as a lattice sum of second derivatives, see (3) ,  or 
with translational and rotational invariance conditions [21-231, which yields identical 
results. Further test calculations have been performed with the exp-6-1 atom-atom 
model B of [15], which we have transformed into a spherical expansion using analyt- 
ical formulas for the long-range dispersion [25] and electrostatic interactions [4] and 
a fitting procedure for the short-range exponential terms. The resulting lattice vibra- 
tion frequencies differ a t  most by 0.2 cm-’ from standard harmonic calculations, in 
which the force constants are evaluated via direct analytical derivatives of atom-atom 
potentials. These minor differences are probably due to  fitting inaccuracies. 

In table 1 experimental and calculated phonon frequencies are presented for a - N 2 .  
It is observed that  in particular the harmonic libron frequencies, obtained with the 
atom-atom model fitted t o  the a b  znztzo potential, are too high compared with exper- 
iment (RMS deviation 12.7 cm-’). A similar deviation of the libron frequencies was 
obtained with the best empirical atom-atom potential from [l], whereas the trans- 
lational phonon frequencies agreed well with experiment (see table 1; note that the 
parameters in this empirical atom-atom potential have been fitted [l] to the lattice fre- 
quencies). As mentioned in section 1, this discrepancy was believed to  be due mainly 
to the failure of the harmonic model, because of large-amplitude angular motions. 
Now we find, however, that  the harmonic calculations which use the direct spherical 
expansion of the ab znztzo potential of [15], i.e. without intervention of an atom-atom 
model, are in excellent agreement with experiment, even for the angular modes with 
an RMS deviation of 5.4 cm-’. Apparently, the direct spherical expansion provides a 
substantially better description of the potential anisotropy than the atom-atom po- 
tential. This plays an important role in the rotational dynamics. In addition, the 
translational lattice vibrations are also better described (1.3 cm-’ RMS deviation). 
Optimization of the crystal structure, within the cubic Pa3 symmetry, increases the 
deviations slightly. 
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Table 1. Lattice vibration frequencies in a - N 2  (in cm-l) from experiment, semi- 
empirical SE and ab initio calculations. 

Ab initio 

Expt SE At om-atom Spherical expansion 

( P61) ([l]) Harmonic Harmonic T D H  [18] 

Lattice constant a (A) 5.644 

r(o, 0,o)  
Librations E, 32.3 

T, 36.3 
T, 59.7 

Translational A, 46.8 
vibrations Tu 48.4 

Tu 69.4 
E, 54.0 

M(.nla, Tla, 0 )  
Mixed Mi2 27.8 

Mi2 37.9 
Mi2 46.8 
Mi2 54.9 
Mi2 62.5 

R(.nla, T I a ,  ./a) 

Translational RT 33.9 
vibrations R2-3 34.7 

R Z  68.6 

Librations RT 43.6 
RZ3 47.2 

RMS deviation of librational frequencies 
RMS deviation of translational frequencies 
RMS deviation of all lattice frequencies 

5.644 

37.5 
47.7 
75.2 

45.9 
47.7 
54.0 
69.5 

29.6 
40.6 
51.8 
59.0 
66.4 

34.4 
35.7 
68.3 

50.7 
57.8 

10.6 
0.6 
6.1 

5.644 

40.7 
50.9 
75.2 

50.2 
49.8 
55.8 
74.3 

33.4 
44.3 
56.6 
61.3 
68.6 

35.3 
37.3 
73.0 

55.9 
58.8 

12.7 
3.1 
8.1 

5.611t 5.644 5.588t 

42.4 
52.8 
77.6 

52.7 
52.6 
58.9 
78.8 

34.9 
46.3 
59.0 
64.4 
72.2 

37.1 
39.2 

77.6 

58.0 
60.9 

14.9 
6.3 

10.4 

27.6 29.7 
41.6 44.3 
67.9 71.6 

44.2 47.8 
46.8 51.1 
54.8 59.8 
70.4 77.5 

24.2 25.0 
36.2 39.0 
49.8 53.2 
58.5 63.8 
65.6 71.6 

33.5 36.4 
34.6 37.4 

69.4 76.6 

48.6 51.7 
49.5 52.3 

5.4 7.6 
1.3 5.6 
3.1 6.5 

5.644 5.699t 

32.8 31.0 
43.4 41.0 
71.5 68.0 

50.6 47.2 
52.7 48.8 
60.2 55.6 
79.4 73.1 

28.8 27.6 
41.5 39.1 
53.3 50.2 
63.7 59.1 
72.0 66.5 

37.0 34.4 
38.4 35.8 

78.4 72.3 

50.7 47.9 
53.6 50.8 

7.5 5.0 
6.5 2.1 
6.7 3.4 

t Obtained via minimization of the lattice energy. 

I t  is interesting to  compare the harmonic lattice vibration frequencies with TDH 
results [18], also included in table 1, which are ottained with the same spherical 
expansion of [15]. This comparison yields directly the anharmonic shifts in the lattice 
frequencies. The  TDH libron frequencies are higher, by 1.8 up to  5.2 cm-l,  than the 
corresponding harmonic values, which increases the discrepancy with experiment from 
5.4 to  7.5 cm-I if the experimental lattice constant is used ( a  = 5.644 A). Further, 
the translational RMS deviation is increased from 1.3 to  6.5 cm-', which appears to  
be mainly due to  third- and fourth-order anharmonic terms in the potential expansion 
with respect to molecular displacements [18]. The upward anharmonic shifts of the 
lattice frequencies are in good agreement with the shifts obtained from Green function 
calculations (27-291. Optimization of the crystal st#ructure lowers the TDH frequencies. 
The resulting overall deviation is 3.4 cm-', which is almost equal to  the harmonic 
deviation of 3.5 cm-I (at the experimental structure). 

In addition, we have performed TDH calculations with the atom-atom potential 
model B of [15], via the spherical expa.nsion used in the test cnlcula.tions described 
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Table  2. Lattice vibration frequencies in -pNz (in cm-l) 

Ab initio 
Expt Semi- 

empirical Atom-atom Spherical expansion 

Harmonic Harmonic m n  [18] ([261) (PI) 
Lat,tice constant a (A)  
Lattice constant c ( A )  

Librations E, 
B1, 
A% 

Translational Eu 
vibrations B I ~  

RMS deviation 

r(o, o,o) 

3.957 3.940 
5.109 5.086 

55.0 50.5 
98.1 74.8 
- 105.1 

65.0 58.3 
- 103.1 

14.2 

3.957 4.181t 3.957 4.039t 3.957 3.961t 
5.109 5.126t 5.109 5.246t 5.109 5.104t 

56.0 48.6 65.7 54.4 67.5 67.6 
101.8 70.6 102.1 89.1 104.2 103.3 
122.5 92.4 118.3 103.2 125.1 124.4 

68.6 55.7 58.1 47.9 65.0 65.2 
112.2 83.2 106.0 86.0 115.8 114.9 

3.0 17.2 7.7 11.2 8.0 7.9 

t Obtained via minimization of the latt,ice energy. 

above. This shows a similar deviation from experiment as the harmonic atom-atom re- 
sults; in particular the TDH libron frequencies in a-nitrogen calculated with the atom- 
atom potential came out about 30% too high. So, we conclude that the substantial 
differences between harmonic and TDH results found earlier [17,18] are mostly due to  
the different modellings of the ab initio potential, especially of its anisotropy. Lattice 
dynamics calculations on the y-phase, where the librational motions are more strongly 
localized, yield a similar conclusion (see table 2).  Apparently, the specific strength 
of TDH lies not so much in the low-temperature dynamics of ordered molecular crys- 
tals, but rather in the description of disordered phases (,&nitrogen [30], for example), 
quantum crystals (solid hydrogen [31]) and the combination of lattice dynamics with 
spin waves (in solid oxygen [2]). 
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